N92-11050

FLEXIBLE ENVELOPE REQUEST NOTATION (FERN)

December 13, 1990
David Zoch
David LaVallee
Stuart Weinstein

LORAL

SEAS Systems, Engineering, and Analysis Support

M-1

Agenda

- Background
- FERN Language Concepts
- FERN Syntax Examples

SEAS

Systems, Engineering, and Analysis Support

LORAL Acresys

Scheduling Application

- Science users send requests to the Resource Scheduling System.
- Requests are requirements for planned instrument operations and are written in FERN.
- The Resource Scheduling System, which may reside in a POCC, processes the requests and generates a schedule.
- The schedule specifies the timeline of user activities and is distributed to the science users.

SEAS

Systems, Engineering, and Analysis Support

M-3

Motivation for FERN

- Science users must represent their resource requirements and constraint relationships in a format that can be interpreted by computers.
- If their initial resource requests cannot be satisfied, science users need to propose reduced resource amounts or alternative experiments for their instrument operations. Thus, some of the science user requests may be flexible and complex rather than simple.
- FERN uses a language format. For example, "TAPE_DUMP for 5 minutes to .
 10 minutes" is more user-friendly than "TAPE_DUMP,5,10." This format
 allows users to state their requirements in a more direct and natural manner.

SEAS

Systems, Engineering, and Analysis Support

Characteristics of FERN

ROBUST

- Supports a variety of user resource requirements and constraints.
- Supports alternative resource amounts and requests.
- Supports repetitive requests ("generic requests") based on orbital events rather than specific start times.

READABLE

- Keyword based, not positional. For example, avoids "ROB1,2-4,60,200-300."

FLEXIBLE

- Time durations and relaxable constraints

• OBJECT-ORIENTED

- Data abstraction
- Reusable data objects

SEAS

Systems, Engineering, and Analysis Support

LORAL

M-5

Types of Information Needed in Requests

- Flexible resource requirements
- Flexible request durations
- Flexible experiment timing / coordination requirements between activities
- Scheduling information for repetitive activities
- · Alternative activities
- Relative importance of each requirement

SEAS

Systems, Engineering, and Analysis Support

FERN Structures

GENERIC REQUEST

- Pattern of replication of activities
- Alternative activities
- Rules

ACTIVITY

- Sequence of steps that comprise the activity
- Duration of steps
- Constraints common to whole activity
- Defined in database, then referenced by name in GENERIC REQUEST

STEP

- Amounts of resources
- Constraints
- Defined in database, then referenced by name in ACTIVITIES

SEAS

Systems, Engineering, and Analysis Support

M-B

FERN Structures (cont'd)

RESOURCES

- Support user operations.
- Are represented as scalars that vary over time.

CONSTRAINTS

- Restrict the times when a request can be scheduled.
- Are specified with respect to timegraphs, activities, steps, or other requests.

TIMEGRAPHS

- Are used to specify time windows, view periods, preferable scheduling times, spacecraft events, calendar events, etc.

SEAS

Systems, Engineering, and Analysis Support

LORAL

M-9

Generic Request

Generic GENERIC_NAME is

3 to AS MANY AS POSSIBLE activities per Sun_in_view
With default min start time separation 5 minutes,
With default max start time separation 10 minutes,
With summed duration 4 hours, -- sum of multiple activity durations is 4 hours
With priority 2,
With strategy Maximizing_Separation
Schedule
ACTIVITY1 and ACTIVITY2
Or schedule
ACTIVITY3
Or schedule
ACTIVITY4 With min start time separation 4 minutes

SEAS

Systems, Engineering, and Analysis Support

End generic

LORAL Morestyn

Activity

Activity ACTIVITY_NAME is
Steps
STEP1 for 1 to 8 minutes,
idle STEP2 for 2 to 5 minutes,
STEP3 for 5 minutes,
interruptable STEP4 for AS LONG AS POSSIBLE,
STEP5 for 5 minutes
With activity duration 30 minutes
End activity

Interruptable Step - resources of step can be re-allocated without disrupting activity.

Idle Step - same as interruptable, but not displayed on timeline. Used to represent idle periods.

step1 step2 step3 step4 New Step step5

SEAS

Systems, Engineering, and Analysis Support

LORAL

M~11

Step

Step STEP_NAME is Resources INSTRUMENT_X, POWER 5 watts, TDRSS_SA 1,

Constraints

Occurs entirely during ORBIT_DAYLIGHT, Starts at the same time as ACTIVITY_X,

End step

SEAS

Systems, Engineering, and Analysis Support

LORAL Arresy

Resources

- · Initial amount may vary over time in discrete steps
- Pooled resources contain equivalent or nearly equivalent items:
 - TDRSS is (TDRSS_E, TDRSS_W)
 - Crew member is (commander, pilot, mission_specialist)
 - Redundant equipment is (line_recorder_1, line_recorder_2)
- Some resources are available at different times to different users (e.g., TDRS)
- · Resources may be either durable or consumable

SEAS

Systems, Engineering, and Analysis Support

LORAL

M~13

Pooled Resources

Resource TDRSS_SA is (Forever (TDRSS_E_SA1, TDRSS_E_SA2, TDRSS_W_SA1, TDRSS_W_SA2)) End resource

TDRSS SA Allocation

TDRSS_E_SA1 TDRSS_E_SA2 TDRSS_W_SA1 TDRSS_W_SA2

Even though some TDRSS_SA is available at every point, no single antenna is continuously available. Thus, a request for 50 minutes of TDRSS_SA is NOT satisfied.

SEAS

Systems, Engineering, and Analysis Support

Resource Availability for Pooled Resources

Some resources are available at different times to different users

For example, TDRSS communication resources are available at different times to different satellites, depending on the position of the satellite with respect to TDRSS.

Step DATA_LINK is
Resources
TDRSS_E
Constraints
Occurs entirely during TDRSS_IN_VIEW
End step

SEAS Systems, Engineering, and Analysis Support LORAL

M-15

Expressive Notation

Supports non-specific durations:

VIEW_STAR_STEP for AS LONG AS POSSIBLE RECALIB_STEP for 2 to 8 minutes

Supports flexible requests where the resource amounts and duration of the request are selected by alternative relaxation levels. This capability allows the scheduling algorithm to reduce resource amounts or shorten the duration of the request in order to fit the request on the schedule:

RESOURCE1 15 units, RESOURCE2 (25 units, 23 units AT RELAXATION 4, 19 units AT RELAXATION 8, 15 units AT RELAXATION 12)

STEP1 for (30 minutes, 28 to 30 minutes AT RELAXATION 5, 25 to 30 minutes AT RELAXATION 15)

SEAS
Systems, Engineering, and Analysis Support

Temporal Constraints

 Temporal Constraints specify when a request can be scheduled with respect to:

Calendar Events, Orbital Events, Requests, or User Defined Events

- Allow for precise activity sequencing and coordinated activity dependencies.
- Sample temporal relationships between request A and object B are:

A B Occurs before B

B A Occurs after B

Ends 5 minutes after the start of B

Occurs right after B

R Overlaps all of B

Does not overlap B

SEAS Systems, Engineering, and Analysis Support LORAL

M-17

M-18

Time Formats

Representation of Absolute Time:

• 1990/120/09:00:15.12 April 30, 1990, 9:00:15.12 am

1990/120-09:00:15.12
April 30, 1990, 9:00:15.12 am
April 30, 1990, 9:00:15.12 am

Representation of Relative Time:

3/2:30
 3 days, 2 hours, and 30 minutes

• 2.5 2 hours, 30 minutes

• 2.5 hours 2 hours, 30 minutes

• :24.25 24 minutes, 15 seconds

• 24.25 minutes 24 minutes, 15 seconds

SEAS

Systems, Engineering, and Analysis Support

LORAL

M-19

Changes to FERN

New FERN

- UIL like keywords
- Generic repetition by iteration or userdefined windows
- Direct support of alternatives
- Flexible duration
- Pooled resources
- · Database of steps

G A1 A2 A1 S1 S2 S3 R1 R2 R3

SEAS

Systems, Engineering, and Analysis Support

Old FERN

- LISP like ()
- Generic repetition by iteration
- Alternatives by mutual exclusion
- Fixed duration only
- No pooled resources
- · Unnamed phases

LORAL

M-20

Sample FERN Requests

Support the following features:

- -- Temporal relationships between steps or activities
- -- Maximum activity length to limit step delays
- -- Alternative requests
- -- Idle resource usage between steps of the same activity
- -- Flexible request durations
- -- Relaxable constraints
- -- Event driven planning/scheduling concepts
- -- ESP and UIL time formats
- -- Step oriented (generics -> activities -> steps)
- -- Min and max delays between steps and activities
- -- User priorities

SEAS

Systems, Engineering, and Analysis Support

LORAL

M-21

Temporal Relationship between Two Steps

Problem: The steps ERBS_TR_DUMP and ERBS_RANGING occur concurrently when command uplink and telemetry downlink are available (coherent transponder mode). This example shows how to specify relationships between steps by using a constraint expression.

```
Step ERBS_TR_DUMP is
Resources
TDRSS_I_CHANNEL_FORWARD_LINK, -- mode 1.0 kbps
TDRSS_I_CHANNEL_RETURN_LINK, -- mode 1.6 kbps
TDRSS_Q_CHANNEL_RETURN_LINK -- mode 32 kbps
End step
```

Step ERBS_RANGING is
Resource
TWO_WAY_RANGING_AND_DOPPLER 1,
Constraint
Occurs entirely during ERBS_TR_DUMP
End step

SEAS

Systems, Engineering, and Analysis Support

LORAL Arrity

Maximum Activity Length to Limit Step Delays

Problem: The transition between steps is flexible and does not need to occur at a specific time. Switching from command uplink only mode to command uplink and telemetry downlink mode may begin from 5 to 7.5 minutes after the ERBS activity start time.

Activity ERBS_NORMAL_CASE is
Steps

ERBS_CMD_LOAD_AND_DOPPLER for 5 minutes to 7.5 minutes,
ERBS_CMD_LOAD for 2.5 minutes to 5 minutes,
ERBS_TR_DUMP_AND_RANGING for 13 minutes,
ERBS_TR_DUMP for 10 minutes
With activity duration for 33 minutes
Constraint
Starts during ERBS_WINDOW
End activity

SEAS Systems, Engineering, and Analysis Support LORAL

M-23

Alternative Requests

Problem: In some cases, all of the activities (instances) belonging to a generic request cannot be scheduled. Alternative requests are backup requests which tell the scheduling system how to resolve conflicts. In this example, the last alternative request applies only to those activities (instances) that remain unscheduled after the nominal request and first alternative request were processed.

Generic ERBS_SUPPORT is

1 activity per EVERY_TWO_ERBS_ORBITS

Schedule - schedule nominal first
ERBS_NORMAL_CASE
Or schedule - move ranging step to try to resolve resource conflict
ERBS_RETURN and ERBS_SMALL_WINDOW_TRACKING
Or schedule - if one of the ERBS activities cannot be scheduled, place it within the next 3 orbits
ERBS_BIG_WINDOW_RETURN and ERBS_BIG_WINDOW_TRACKING
End generic

SEAS Systems, Engineering, and Analysis Support

Temporal Relationship between Two Activities

Problem: The CLAES instrument normally views for three days on and three days off. However, during a spacecraft yaw manuever, the science user wants to interrupt the normal view activity to close the instrument's aperature door. The normal view activity resumes after the spacecraft yaw manuever.

Activity CLAES_CLOSED_DOOR_VIEW_ACT is Steps

CLAES_CLOSE_APERATURE_STEP for 1 minute,
CLAES_DOOR_CLOSED_VIEW_STEP for as long as possible,
CLAES_OPEN_APERATURE_STEP for 1 minute,

Constraints
Overlaps exactly UARS_YAW_MANUEVER
Occurs entirely during CLAES_NORMAL_VIEW_ACT
End activity

SEAS

Systems, Engineering, and Analysis Support

LORAL Rerosy

M-25

Idle Resource Usage between Steps

Problem: The HALOE instrument alternately views the sunrise and sunset. In between, it is stowed. The idle step is used to maintain the minimum resources required for stowing between viewing.

Activity HALOE_NORMAL_ACT is

Steps

HALOE_SUNRISE_VIEW_STEP for 15 minutes,

HALOE_SUNRISE_SLEW_TO_STOW_STEP for 20 seconds,

idle HALOE_STOW_STEP for as long as possible, a limited to about 25 minutes,

HALOE_SUNSET_VIEW_STEP for 15 minutes,

HALOE_SUNSET_SLEW_TO_STOW_STEP for 15 seconds,

idle HALOE_STOW_STEP for as long as possible - for remainder of orbit End activity

SEAS

Systems, Engineering, and Analysis Support

DRAL